This file has been cleaned of potential threats.

To view the reconstructed contents, please SCROLL DOWN to next page.

جامعة المنوفية كلية الهندسة الإلكترونية قسم هندسة الالكترونيات و الاتصالات الكهربية

كاية الهندسة الإلكترونيم

Department offering the program: Department offering the course: Electronics and Electrical Communications Computer Sciences and Engineering

Course Specification

1- Course basic information :							
Course Code: CSE 014	Course Title: Logic Design	Academic year: 2015/2016					
Department Requirement		Level (0) – Semester : 1 st					
Field: Computer Applications and ICT	Teaching hours: Lecture [2]	Tutorial [0] Lab [2]					

2- Course	1. To provide students with the basics of Binary representation, Codes and							
Objectives	their conversions.							
	To enhance student skills in the field of Minimization of logic expressions by							
	algebraic method and K-map method.							
	To provide students with the principles of design of logic gates, logic circuits							
	and combinational logic circuits.							
	4. To enhance student ability to demonstrate the principles of Flip Flops and the							
	design of sequential logic circuits.							
3- Intended Lear	ning Outcomes: A RN Course II Os							

جامعة المنوفية كلية الهندسة الإلكترونية قسم هندسة الالكترونيات و الاتصالات الكهربية

erstanding:	A.1. Explain concepts and theories of mathematics and sciences, appropriate to the Logic Design.A.2. Outline basics of information and communication technology.	 A1.1 Explain Concepts of Binary representation, Codes and their conversions, BCD, Octal, Hexadecimal, ASCII, Gray and Signed binary number representation with 1's and 2's complement methods. A1.2 Explain Concepts of Minimization of logic expressions by algebraic method and K-map method A1.3 Explain Concepts of Combinational circuits. A1.4 Explain Concepts of sequential logic circuits. A2.1 Outline the basics of binary representation. A2.2 Outline the basics of binary arithmetic and Boolean
A- Knowledge and Unde	(ICT)	Algebra.A2.3 Outline the basics of logic gates and circuits.A2.4 Outline the basics of Flip Flops.A2.5 Outline the basics of Registers and counters.
	A.4 Demonstrate principles of design including elements design, process and/or a system related to specific Logic Design.	A4.1 Demonstrate principles of design for combinational circuits.A4.2 Demonstrate principles of design for sequential logic circuits
	A.8 Describe current engineering technologies as related to Logic Design.	A8.1 Describe current engineering technologies related to combinational circuits, Programming logic devices and gate arrays.A8.2 Describe current engineering technologies related to sequential circuits design methodology.
	A.13. Explain elementary science underlying electronic engineering systems and information technology.	A13.1 Explain elementary science underlying logic gates. A13.2 Explain elementary science underlying combinational circuits-Programming logic devices and gate arrays. A13.3 Explain elementary science underlying Flip-Flops. A13.4 Explain elementary science underlying Registers and counters.

Computer Science and Engineering Program

	B.5 Assess and evaluate	B5 1 Assess and evaluate the characteristics and		
	characteristics and performance	performance of logic gates		
	components systems and processes	B5.2 Assess and evaluate the characteristics and		
	components, systems and processes	performance of combinational circuits		
		B5.3 Assess and evaluate the characteristics and		
		performance of Flip Flops		
		B54 Assess and evaluate the characteristics and		
S		performance of Registers and counters		
ikil		performance of Registers and counters.		
al S	B.8 Select and appraise	B8.1 Select appropriate logic gates to a variety of		
ctu:	appropriate ICT tools to a variety	electronic engineering design problems		
llec	of engineering problems	B& 2 Select appropriate adders subtractors encoders		
nte	or engineering problems.	decoders comparators multiplexers de-multiplexers		
	1 7 4	narity generators etc to a variety of electronic		
B		engineering design problems		
		B8 3 Select appropriate Programming logic devices and		
	14 12	gate arrays to a variety of electronic engineering design		
	1 2. 11 2.	problems		
	1 1 1 1 1 1	B84 Select appropriate Flip Flops Registers counters		
	1 0 1 9	and Irregular counters to a variety of electronic		
		engineering design problems.		
	C.1. Apply knowledge of	C1.1 Apply knowledge of Boolean Algebra and Logic		
	mathematics, science, information	gates to design AND, OR, etc. gates.		
	technology, design, business	C1.2 Apply knowledge of Boolean Algebra and		
	context and engineering practice	Combinational circuits to design adders, subtractors,		
	integrally to solve engineering	encoders, decoders, comparators, multiplexers, de-		
lls	problems.	multiplexers, parity generators, etc.		
škil		C1.3 Apply knowledge of Boolean Algebra and		
alS		Combinational circuits to design Programming logic		
on	9	devices and gate arrays		
essi		C1.4 Apply knowledge of Boolean Algebra and		
of	111111111	Sequential Circuits to design Flip-Flops.		
ĿЬ		C1.5 Apply knowledge of Boolean Algebra and		
Ċ	C.5. Use computational facilities	Sequential Circuits to design Registers and Counters.		
	and techniques, measuring			
	instruments, workshops and	C5.1 Use measuring instruments and laboratory		
	laboratory equipment to design	equipment to design experiments to demonstrate the		
	experiments, collect, analyze and	Fundamentals of AND, OR, EXCLUSIVE-OR logic		
	interpret results.	gates.		

جامعة المنوفية كلية الهندسة الإلكترونية

قسم هندسة الالكترونيات و الاتصالات الكهربية

C5.2 Use measuring instruments and laborate							
			equipment to design experiments to understand the				
			basics of Half Adders and Full Adders.				
			C5.3 Use measuring instruments and laboratory				
			equipment to design experiments to assess the				
			performance of Binary-to-Decimal decoder.				
			C5.4 Use measuring instruments and laboratory				
			equipment to design experiments to build Practical				
			multiplexer circuit.				
		/ /	C5.5 Use measuring instruments and laboratory				
			equipment to design experiments to demonstrate the				
			performance of Modulus Counter.				
	C.12. Prepare	and present	C12.1 Prepare and present technical reports on the				
	technical report	rts.	design methodologies for Combinational circuits.				
			C12.2 Prepare and present technical reports on the				
	1 70	120	design methodologies for Sequential circuits.				
	D.1. Collab	orate effectively	D1.1 Collaborate effectively within multidisciplinary team				
	within multidia	sciplinary team.	during Lab times.				
cills	D 3 Commun	icata affactivaly	D2.1 Communicate affectively with demonstrators and				
I SI	D.3. Commun	icale effectively.	DS.1 Communicate effectively with demonstrators and				
era			concagues in faboratory times.				
ene	D.4. Demons	strate efficient IT	D4.1 Demonstrate efficient IT capabilities relevant to Logic				
-G	capabilities.		Design topics.				
D	D 6 Effortive	ly managag tagka	D61 Effectively manages tasks time and resources in				
	D.0. Effective	urces	D.0-1. Effectively manages tasks, time, and resources in laboratory times and exams				
Λ_ ((1110, and 1000)	Review of Data and	number systems (Binary representation Codes and their				
	a) Course	conversions. BCD	Octal Hexadecimal ASCII Gray) - Signed binary				
COI	itenus	number representat	tion with 1's and 2's complement methods Binary				
		arithmetic. Boolean	algebra, logic gates and circuits. Minimization of logic				
		expressions by alge	braic method. K-map method - Combinational circuits-				
		adder, subtractor, er	coder, decoder, comparator, multiplexer, de-multiplexer,				
		parity generator, etc					
		Design of combin	ational circuits-Programming logic devices and gate				
		arrays. Sequential	Circuits: Flip Flops, various types of Registers and				
		counters and their of	design, Irregular counter, State table and state transition				
	diagram, sequential circuits design methodology.						
4(b) Practical - Fundamentals of AND LOGIC			s of AND LOGIC				
Lab	ooratory:	- Fundamental	s of OR LOGIC				
		- Basic AND I	Logic with ICs				
		- Basic OR Lo	gic with ICs				
	- EXCLUSIV		E-OR Logic with ICs				
		- Half Adders	and Full Adders				
- Binary-to-De			ecimal decoder				
		- Practical mul	ultiplexer circuit				
- Modulus Cou			Inter				

جامعة المنوفية كلية الهندسة الإلكترونية

قسم هندسة الالكترونيات و الاتصالات الكهربية

5- Teaching and	- Lectures
Learning Methods	- Labs
	 Laboratory assignments and reports
6- Teaching and	1-Assign a portion of the office hours for those students.
Learning Methods for	2- Give them specific tasks and evaluate them in it.
disable students	3- Repeat the explanation of some of the course material and Lectures
	and Laboratory times.
7- Student Assessment	

a- Assessment Methods	- Laboratory assignments and reports.					
	- Quizzes					
	- Labs attendance and exam.					
	- Midterm, and final exams	9				
b- Assessment Schedule	- Laboratory assignments and reports:	Weekly				
	- Quizz-1:	Week no 3				
	- Mid-Term exam:	Week no 8				
	- Quizz-2:	Week no 11				
	- Lab exam:	Week no 15				
	- Final – term examination: Week no 16					
c- Weighting of	- Class tutorial and quizzes:	10 %				
Assessment	- Mid-term examination:	10 %				
	- Oral and Lab/practical exam:	20 %				
	- Final – term examination:	<u>60 %</u>				
	Total	100 %				
8- List of text books and	references:					
a- Course notes	There are lectures notes prepared in the form of a book.					
b- Text books	[1] Thomas Floyd, "Digital fundamental", 11 th edition Prentice-Hall,					
	Inc., July 24, 2014.					
c- Recommended	Thomas Floyd, "Digital fundamental", 10 th edition Prentice-Hall, Inc.,					
books	March 29, 2008.	7				
d- Periodicals, Web	http://www.tutorialspoint.com/comp	uter fundamentals/				

Course contents - ILOs Matrix

sitesetc

Content Topics	Week	A- Knowledge	В-	C-Professional	D- General and
		&	Intellectual	and practical	transferable
		Understanding	skills	skills	skills
Review of Data and number systems (Binary representation, Codes and their conversions: BCD, Octal, Hexadecimal, ASCII, Gray) - Signed binary number representation with 1's and 2's	1-2	A1.1, A2.1			D1.1, D3.1, D4.1, D6.1
complement methods.					
Binary arithmetic, Boolean algebra	3	A2.2		C1.1	D1.1, D3.1, D4.1, D6.1

https://www.coursera.org/course/programming1

http://www.cprogramming.com/

جامعة المنوفية

كلية الهندسة الإلكترونية

قسم هندسة الالكترونيات و الاتصالات الكهربية

logic gates and circuits	4-5	A2.3, A13.1	B5.1, B8.1	C1.1, C5.1	D1.1, D3.1, D4 1, D6 1
Minimization of logic expressions by algebraic method. K-map method.	6-7	A1.2			D1.1, D3.1, D4.1, D6.1
Combinational circuits- adder,					
subtractor, encoder, decoder, comparator, multiplexer, de-	9	A1.3	B5.2, B8.2	C1.2, C5.2, C5.3, C5.4	D1.1, D3.1, D4.1, D6.1
multiplexer, parity generator, etc.					
Design of combinational circuits- Programming logic devices and gate arrays.	10	A4.1, A8.1, A13.2	B8.3	C1.3, C12.1	D1.1, D3.1, D4.1, D6.1
Sequential Circuits: Flip Flops	11-12	A1.4, A2.4, A13.3	B5.3, B8.4	C1.4	D1.1, D3.1, D4.1, D6.1
Various types of Registers and counters and their design, Irregular counter, State table and state transition diagram.	>	A2.5, A13.4	B5.4, B8.4	C1.5, C5.5	D1.1, D3.1, D4.1, D6.1
Sequential circuits design methodology.	13	A4.2,A8.2	B8.4	C12.2	D1.1, D3.1, D4.1, D6.1

Teaching and Learning Methods - ILOs Matrix

Teaching and Learning Methods	A- Knowledge &	B- Intellectual	C- Professional and practical	D- General and transferable
	Understanding	SKILLS	Skills	Skills
Lectures	A.1,A.2,A.4, A.8, A.13	B5,B8	2	D3
Labs	A.1,A.2,A.4, A.8, A.13	B5,B8	C1, C5	D1,D3,D.4,D.6
Laboratory assignments	A.1,A.2,A.4, A.8, A.13	B5,B8	C1, C5, C12	D.4,D.6

Assessment Methods - ILOs Matrix

	A- Knowledge B-		C-Professional	D- General and	
Assessment Methods	&	Intellectual	and practical	transferable	
	Understanding	skills	skills	skills	
Weekly Laboratory	A.1,A.2,A.4,	B5,B8	C 12	D1D2D4D6	
assignments	A.8, A.13		C.12	D1,D3,D.4,D.0	
Labs attendance and Lab.	A.1,A.2,A.4,	B5,B8	C1C5		
exam	A.8, A.13		C.1, C.J	D1,D3,D.4,D.0	
Quizzes, Midterm, and	A.1,A.2,A.4,	B5,B8		D I D 6	
Final written exams	A.8, A.13			D.4,D.0	

Authorized from department board at 15/05/2016 Authorized from college board at 05/06/2016

Course coordinator:

Assc. Prof. Gamal Attia Mahrous

Head of Department:

Prof. Fathi El-Sayed Abd El-Samie